Diagnostic and Therapeutic Experience in COVID-19

Beate Roxane Jaeger, MD Board certified for Internal and Laboratory Medicine St. Georg Clinic, Bad Aibling, Germany +

0

"We have to treat sick individuals, but not illnesses." D. Seidel

 Genetic predisposition – age and gender related preconditions – prior infections (e.g. MECFS, EBV) – metabolic disorders (hypertension, diabetes, high Chol, adipositas) – autoimmune diseases – malignomas – neurologic/ psychiatric prior diseases – degenerative diseases (e.g. atherosclerosis) and allergic predispositions

Both, Long COVID and vaccine-acquired COVID are to be considered as systemic diseases, and repeated vaccines weaken the immune system and act as an instigator for preexisting illnesses.

Combination cases: COVID-19 infection and vaccine injuries

Headaches; Dizziness; Flares of consciousness

Pneumonia; Peri-Myocarditis

Weakness; Muscle Pain; Joint Pain; Unable to walk;

SYMPTOMS REPORTED BEFORE TREATMENT

H.E.L.P. Apheresis

Heparin-mediated

Extracorporeal

LDL/Fibrinogen

Precipitation

B.Braun

Before and after H.E.L.P. apheresis

45-year-old lady with Long COVID and perimyocarditis

First H.E.L.P. Apheresis Treatment on 05.08.2021			
Parameter	Before apheresis	After apheresis	Reference values
Venous oxygen saturation (%)	16,5 ↓	86,1 ↑	60-80
Fibrinogen (mg/dl)	782 ↑	373 ↓	180-350
D-Dimer (ng/ml)	3108 ↑	2079 ↓	< 500
CRP (mg/L)	130,8 ↑	66,4↓	< 5
Haemoglobin (g/dl)	11,1	Unchanged	11,2-15,7
Platelets (/µl)	419	Unchanged	182-369

Provided to the PMC COVID-19 Collection by

Wolters Kluwer

<u>Circulation.</u> 2023 Mar 14; 147(11): 867–876. Published online 2023 Jan 4. doi: <u>10.1161/CIRCULATIONAHA.122.061025</u>

PMCID: PMC10010667 | NIHMSID: NIHMS1859598 | PMID: <u>36597886</u>

Circulating Spike Protein Detected in Post-COVID-19 mRNA Vaccine Myocarditis

Lael M. Yonker, MD, ^{II}, ^{2,6,*} Zoe Swank, PhD, ^{6,7,*} Yannic C. Bartsch, PhD, ^{6,9*} Madeleine D. Burns, MS, ^{1,2} Abigail Kane, MD, ^{1,2} Brittany P. Boribong, PhD, ^{1,2,6} Jameson P. Davis, BS, ^{1,2} Maggie Loiselle, BS, ^{1,2} Tanya Novak, PhD, ^{6,10} Yasmeen Senussi, MBBS, ^{6,7,8} Chi-An Cheng, PhD, ^{6,7,8} Eleanor Burgess, MS, ⁹ Andrea G. Edlow, MD, ^{3,4,10} Janet Chou, MD, ^{6,11} Audrey Dionne, MD, ^{6,12} Duraisamy Balaguru, MD, ^{2,6} Manuella Lahoud-Rahme, MD, ^{2,6} Moshe Arditi, MD, ¹³ Boris Julg, MD, PhD, ^{5,6,9} Adrienne G. Randolph, MD, ⁶ Galit Alter, PhD, ^{6,9} Alessio Fasano, MD, ^{1,2,6†} and David R. Walt, PhD^{II6,7,8†}

Author information > Article notes > Copyright and License information <u>PMC Disclaimer</u>

Flow Scheme of the H.E.L.P. Procedure

Wikipedia

Potential benefits of H.E.L.P. apheresis in COVID-19

- Heparin binds SARS-CoV-2 spike protein
- Fibrinogen ↓ 50-70%
- ↓ procoagulant precursors by 35-50%
- 400,000 units unfractionated heparin dissolve microthrombi
- ↑ myocardial, cerebral, and pulmonary blood flow
- \downarrow cytokines (IL-6, IL-8, TNF- α), CRP, and viral and bacterial toxins, possibly prions

- Direct access to micro and microcirculation
- ↓ LDL-C, Lp(a), VLDL, lipid nanoparticles
- Protective IgM or IgG antibodies are not removed
- Leukocyte and platelet function unaffected
- Can be used in combination with antivirals, antibiotics, antihypertensives, and anticoagulants

Percentage reduction of Long COVID symptoms post H.E.L.P. apheresis

DIFFERENT STAGES OF TREATMENT AT WHICH SYMPTOMS WERE REPORTED

2022 Theoretical Paper

> Front Cardiovasc Med. 2022 Oct 11;9:1007636. doi: 10.3389/fcvm.2022.1007636. eCollection 2022.

The potential of heparin-induced extracorporeal LDL/fibrinogen precipitation (H.E.L.P.)-apheresis for patients with severe acute or chronic COVID-19

Beate Roxane Jaeger ¹, Hayley Emma Arron ², Wiltrud M Kalka-Moll ³, Dietrich Seidel ⁴

Affiliations + expand

PMID: 36304538 PMCID: PMC9592739 DOI: 10.3389/fcvm.2022.1007636

Free PMC article

Detection of microclots & endothelial damage

- Inflammatory molecules bind to fibrinogen forming protein misfolding
- Thioflavin T (ThT) binds to beta-sheet structures in fibrinogen

Observing platelet pathology

- Platelet activation: Pseudopodia and P-selectin translocate to platelet membrane
- GP IIb/IIIa from adjacent platelets bind to fibrinogen to cause platelet adhesion
- CD62P and PAC-1 fluorescent markers detect platelet spreading and clumping

(Booyens from 2021 - in print)

Platelet hyperactivation in Long COVID

Patient A

Patient B

Association of COVID-19 With Major Arterial and Venous Thrombotic Diseases: A Population-Wide Cohort Study of 48 Million Adults in England and Wales

Rochelle Knight # 1 2 3 4, Venexia Walker # 1 4, Samantha Ip # 5 6, Jennifer A Cooper 1 2, Thomas Bolton ^{5 7 8}, Spencer Keene ^{5 7}, Rachel Denholm ^{1 2 9}, Ashley Akbari ¹⁰, Hoda Abbasizanjani ¹⁰, Fatemeh Torabi ¹⁰, Efosa Omigie ¹¹, Sam Hollings ¹¹, Teri-Louise North ¹, Renin Toms ^{1 12}, Xiyun Jiang ⁵, Emanuele Di Angelantonio ^{5 7 13 14}, Spiros Denaxas ^{15 16 17 18}, Johan H Thygesen ¹⁶, Christopher Tomlinson ^{16 19 17}, Ben Bray ²⁰, Craig J Smith ^{21 22}, Mark Barber ²³, Kamlesh Khunti ²⁴, George Davey Smith ^{1 4}, Nishi Chaturvedi ²⁵, Cathie Sudlow ⁸, William N Whiteley # ^{26 27}, Angela M Wood # ^{5 7 13 14 28 29}, Jonathan A C Sterne # 1 2 9; CVD-COVID-UK/COVID-IMPACT Consortium and the Longitudinal Health and Wellbeing COVID-19 National Core Study

Affiliations + expand PMID: 36121907 PMCID: PMC9484653 DOI: 10.1161/CIRCULATIONAHA.122.060785 Free PMC article

Treatment Regimen

Patient C:

- Age: 7
- Gender: Female
- Cause: COVID-19 infection (March 2021) worsened by vaccination (03/2021, 11/2021, 2022)
- Before symptoms:
 - Unable to walk, unable to attend school, noise sensitive, frustration
 - June 2022: Mild endothelial damage and microclots, significant platelet hyperactivation with spreading and massive clumping.
- Anticoagulant treatment: 75mg Clopidogrel for 2 months (June 2022)
- After symptoms:
 - Massive improvement in first week, improvement in mood, decreased noise sensitivity, able to play, able to attend school, increased energy.
 - Still deficits in Maths and concentration.
 - March 2023: Reduced microclot and endothelial damage, still platelet hyperactivation

